Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.915
Filtrar
1.
PLoS One ; 19(5): e0295109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739572

RESUMEN

The genetic complexity of polygenic traits represents a captivating and intricate facet of biological inheritance. Unlike Mendelian traits controlled by a single gene, polygenic traits are influenced by multiple genetic loci, each exerting a modest effect on the trait. This cumulative impact of numerous genes, interactions among them, environmental factors, and epigenetic modifications results in a multifaceted architecture of genetic contributions to complex traits. Given the well-characterized genome, diverse traits, and range of genetic resources, chicken (Gallus gallus) was employed as a model organism to dissect the intricate genetic makeup of a previously identified major Quantitative Trait Loci (QTL) for body weight on chromosome 1. A multigenerational advanced intercross line (AIL) of 3215 chickens whose genomes had been sequenced to an average of 0.4x was analyzed using genome-wide association study (GWAS) and variance-heterogeneity GWAS (vGWAS) to identify markers associated with 8-week body weight. Additionally, epistatic interactions were studied using the natural and orthogonal interaction (NOIA) model. Six genetic modules, two from GWAS and four from vGWAS, were strongly associated with the studied trait. We found evidence of both additive- and non-additive interactions between these modules and constructed a putative local epistasis network for the region. Our screens for functional alleles revealed a missense variant in the gene ribonuclease H2 subunit B (RNASEH2B), which has previously been associated with growth-related traits in chickens and Darwin's finches. In addition, one of the most strongly associated SNPs identified is located in a non-coding region upstream of the long non-coding RNA, ENSGALG00000053256, previously suggested as a candidate gene for regulating chicken body weight. By studying large numbers of individuals from a family material using approaches to capture both additive and non-additive effects, this study advances our understanding of genetic complexities in a highly polygenic trait and has practical implications for poultry breeding and agriculture.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Pollos/genética , Pollos/crecimiento & desarrollo , Peso Corporal/genética , Polimorfismo de Nucleótido Simple , Epistasis Genética , Fenotipo , Femenino , Herencia Multifactorial , Masculino
2.
Nat Commun ; 15(1): 3776, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710707

RESUMEN

The causes of temporal fluctuations in adult traits are poorly understood. Here, we investigate the genetic determinants of within-person trait variability of 8 repeatedly measured anthropometric traits in 50,117 individuals from the UK Biobank. We found that within-person (non-directional) variability had a SNP-based heritability of 2-5% for height, sitting height, body mass index (BMI) and weight (P ≤ 2.4 × 10-3). We also analysed longitudinal trait change and show a loss of both average height and weight beyond about 70 years of age. A variant tracking the Alzheimer's risk APOE- E 4 allele (rs429358) was significantly associated with weight loss ( ß = -0.047 kg per yr, s.e. 0.007, P = 2.2 × 10-11), and using 2-sample Mendelian Randomisation we detected a relationship consistent with causality between decreased lumbar spine bone mineral density and height loss (bxy = 0.011, s.e. 0.003, P = 3.5 × 10-4). Finally, population-level variance quantitative trait loci (vQTL) were consistent with within-person variability for several traits, indicating an overlap between trait variability assessed at the population or individual level. Our findings help elucidate the genetic influence on trait-change within an individual and highlight disease risks associated with these changes.


Asunto(s)
Apolipoproteínas E , Bancos de Muestras Biológicas , Estatura , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Humanos , Reino Unido , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estatura/genética , Estudios Longitudinales , Apolipoproteínas E/genética , Antropometría , Análisis de la Aleatorización Mendeliana , Densidad Ósea/genética , Peso Corporal/genética , Adulto , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Vértebras Lumbares , Alelos , Biobanco del Reino Unido
3.
Sci Rep ; 14(1): 6090, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480780

RESUMEN

Genome wide association studies (GWAS) have been utilized to identify genetic risk loci associated with both simple and complex inherited disorders. Here, we performed a GWAS in Labrador retrievers to identify genetic loci associated with hip dysplasia and body weight. Hip dysplasia scores were available for 209 genotyped dogs. We identified a significantly associated locus for hip dysplasia on chromosome 24, with three equally associated SNPs (p = 4.3 × 10-7) in complete linkage disequilibrium located within NDRG3, a gene which in humans has been shown to be differentially expressed in osteoarthritic joint cartilage. Body weight, available for 85 female dogs, was used as phenotype for a second analysis. We identified two significantly associated loci on chromosome 10 (p = 4.5 × 10-7) and chromosome 31 (p = 2.5 × 10-6). The most associated SNPs within these loci were located within the introns of the PRKCE and CADM2 genes, respectively. PRKCE has been shown to play a role in regulation of adipogenesis whilst CADM2 has been associated with body weight in multiple human GWAS. In summary, we identified credible candidate loci explaining part of the genetic inheritance for hip dysplasia and body weight in Labrador retrievers with strong candidate genes in each locus previously implicated in the phenotypes investigated.


Asunto(s)
Luxación Congénita de la Cadera , Luxación de la Cadera , Displasia Pélvica Canina , Perros , Femenino , Humanos , Animales , Estudio de Asociación del Genoma Completo , Displasia Pélvica Canina/genética , Luxación de la Cadera/genética , Suecia , Sitios Genéticos , Luxación Congénita de la Cadera/genética , Peso Corporal/genética , Polimorfismo de Nucleótido Simple
4.
BMC Genomics ; 25(1): 296, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509464

RESUMEN

BACKGROUND: Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS: We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS: We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION: Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Pollos/genética , Sitios de Carácter Cuantitativo , Genómica , Peso Corporal/genética , Fenotipo , Polimorfismo de Nucleótido Simple , China
5.
Genes (Basel) ; 15(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38540449

RESUMEN

Qianhua Mutton Merino is a dual-purpose (meat and wool) breed of sheep that has been newly developed in China. In this study, we assessed the growth and development of the Qianhua Mutton Merino sheep breed under house feeding conditions by measuring the body weight and chest circumference of 2300 rams and ewes of this breed aged 0-24 months. Based on the fitting results of three nonlinear growth models, namely Logistic, Gompertz, and von Bertalanffy, in Qianhua Mutton Merino, we selected the von Bertalanffy model because of its highest fitting degree among all models (R2 > 0.977). The significant analysis of the combined fixation of each sheep body's weight and bust took place (A: mature body weight, B: adjustment parameter, K: instant relative growth rate). The results revealed that parameters A, B, and K of body weight and chest circumference have high heritability and thus could be used as target traits for genetic improvement. Moreover, the correlation strength among A, B, and K suggested that these parameters can be used as a reference to adjust the genetic parameters in the growth model to genetically improve the body size of Qianhua Mutton Merino during breeding.


Asunto(s)
Carne Roja , Oveja Doméstica , Ovinos/genética , Animales , Masculino , Femenino , Peso Corporal/genética , Fenotipo , Carne
6.
Artículo en Inglés | MEDLINE | ID: mdl-38452850

RESUMEN

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Asunto(s)
Inosina Monofosfato , Perciformes , Animales , Secuencia de Bases , Secuencia de Aminoácidos , Inosina Monofosfato/metabolismo , Filogenia , Perciformes/genética , Perciformes/metabolismo , Adenosina Monofosfato/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Peso Corporal/genética , Proteínas de Peces/metabolismo , Mamíferos/metabolismo
7.
Genes (Basel) ; 15(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38540354

RESUMEN

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Asunto(s)
Coturnix , Estudio de Asociación del Genoma Completo , Masculino , Animales , Coturnix/genética , Polimorfismo de Nucleótido Simple/genética , Carne/análisis , Peso Corporal/genética
8.
An Acad Bras Cienc ; 96(1): e20230010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38451594

RESUMEN

Growth and carcass traits are essential selection criteria for beef cattle breeding programs. However, it is necessary to combine these measurements with body composition traits to meet the demand of the consumer market. This study aimed to estimate the genetic parameters for visual scores, growth (pre and post-weaning weights), and carcass (rib eye area (REA), back and rump fat thickness) traits in Nellore cattle using Bayesian inference. Data from 12,060 animals belonging to the HoRa Hofig Ramos herd were used. Morphological traits were evaluated by the MERCOS methodology. The heritability estimates obtained ranged from low to high magnitude, from 0.15 to 0.28 for visual scores, 0.13 to 0.44 for growth, and from 0.42 to 0.46 for carcass traits. Genetic correlations between visual scores and growth traits were generally of moderate to high magnitudes, however, visual scores showed low correlations with carcass traits, except between sacral bone and structure and REA. Selection for visual score traits can lead to favorable responses in body weight and vice versa, but the same is not true for carcass traits. Morphological categorical traits can be used as complementary tools that add value to selection.


Asunto(s)
Composición Corporal , Bovinos/genética , Animales , Teorema de Bayes , Peso Corporal/genética , Composición Corporal/genética , Fenotipo
9.
Poult Sci ; 103(4): 103480, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330887

RESUMEN

Random samples from generation S41 of the Virginia high and low 8-week body weight lines formed the base population for producing a multigenerational reciprocal intercross population. Although genetic mapping from this intercross has been reported, lacking are phenotypic trends across multiple generations. Here, we provide phenotypic information for the parental base population, the F1 reciprocal cross, and subsequent segregating recombinant generations F2 to F17. Heterosis for the selected trait in the F1 was negative for both reciprocal crosses. Phenotypic correlations for the selected trait in the recombinant generations were essentially nil for both males and females as was percent sexual dimorphism and coefficients of variation.


Asunto(s)
Pollos , Femenino , Masculino , Animales , Pollos/genética , Virginia , Cruzamientos Genéticos , Mapeo Cromosómico/veterinaria , Peso Corporal/genética
10.
Animal Model Exp Med ; 7(1): 36-47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356021

RESUMEN

BACKGROUND: Aspergillus fumigatus (Af) is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic background. The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus (Af) using an RNAseq approach in CC lines and hepatic gene expression. METHODS: We studied 31 male mice from 25 CC lines at 8 weeks old; the mice were infected with Af. Liver tissues were extracted from these mice 5 days post-infection, and next-generation RNA-sequencing (RNAseq) was performed. The GENE-E analysis platform was used to generate a clustered heat map matrix. RESULTS: Significant variation in body weight changes between CC lines was observed. Hepatic gene expression revealed 12 top prioritized candidate genes differentially expressed in resistant versus susceptible mice based on body weight changes. Interestingly, three candidate genes are located within genomic intervals of the previously mapped quantitative trait loci (QTL), including Gm16270 and Stox1 on chromosome 10 and Gm11033 on chromosome 8. CONCLUSIONS: Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af. As a next step, eQTL analysis will be performed for our RNA-Seq data. Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.


Asunto(s)
Aspergilosis , Ratones de Colaboración Cruzada , Humanos , Masculino , Ratones , Animales , Ratones de Colaboración Cruzada/genética , Mapeo Cromosómico , Aspergillus fumigatus/genética , RNA-Seq , Predisposición Genética a la Enfermedad/genética , Sitios de Carácter Cuantitativo/genética , Aspergilosis/genética , Peso Corporal/genética
11.
Vet Med Sci ; 10(2): e1388, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38379342

RESUMEN

BACKGROUND: Being able to model a growth curve using three or four non-linear functional parameters could help explain the growth phenomenon in a precise way and would allow the comparison of an animal's development rate, optimize management and feeding strategies and guide animal production strategies. OBJECTIVE: The goal of this study was to estimate the genetic parameters of growth traits of Isfahan indigenous chicken in Iran and to determine the best non-linear model describing the growth curve. METHODS: The prediction of additive genetic parameters was performed using the REML method by WOMBAT. Direct heritability of the studied traits and genetic correlations between them were obtained. The Logistic, Gompertz, von Bertalanffy, Brody, Negative exponential, Weibull, Janoschek and Bridges models were compared based on the coefficient of determination (R2 ), mean square error (MSE) and akaike information criterion. RESULTS: The Gompertz model was identified as the best model for describing the growth curve for Isfahan native chicken. The heritability of maturity weights (A), initial weight (B) and maturity rate (K) parameters were 0.223 ± 0.002, 0.016 ± 0.005 and 0.087 ± 0.001, respectively. CONCLUSION: This study shows that Isfahan indigenous chicken has the genetic potential for improving growth and reproduction based on their desirable heritabilities and correlations using appropriate models.


Asunto(s)
Pollos , Reproducción , Animales , Pollos/genética , Peso Corporal/genética , Fenotipo , Irán
12.
Genes (Basel) ; 15(2)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397239

RESUMEN

(1) Background: Copy number variation (CNV) is a critical component of genome structural variation and has garnered significant attention. High-throughput screening of the KCNJ15 gene has revealed a correlation between the CNV region and the growth traits of goats. We aimed to identify the CNV of the KCNJ15 gene in five goat breeds and analyze its association with growth characteristics. (2) Methods: We utilized 706 goats from five breeds: Guizhou black goat (GZB), Guizhou white goat (GZW), Bohuai goat (BH), Huai goat (HH), and Taihang goat (TH). To evaluate the number of copies of the KCNJ15 gene using qPCR, we analyzed the correlation between the CNV and growth characteristics and then used a universal linear model. The findings revealed variations in the distribution of different copy number types among the different goat breeds. (3) Results: Association analysis revealed a positive influence of the CNV in the KCNJ15 gene on goat growth. In GZB, individuals with duplication types exhibited superior performance in terms of cannon bone circumference (p < 0.05). In HH, individuals with duplication types exhibited superior performance in terms of body slanting length (p < 0.05). Conversely, normal TH demonstrated better body height and body weight (p < 0.05), while in GZW, when CN = 3, it performed better than other types in terms of body weight and chest circumference (p < 0.05). However, in BH, it had no significant effect on growth traits. (4) Conclusions: We confirmed that the CNV in the KCNJ15 gene significantly influences the growth characteristics of four distinct goat breeds. The correlation between KCNJ15 gene CNVs and goat growth traits offers valuable insights to breeders, enabling them to employ precise and efficient breeding methods that enhance livestock welfare, productivity, and overall economic benefits in the industry.


Asunto(s)
Cabras , Canales de Potasio de Rectificación Interna , Animales , Peso Corporal/genética , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Cabras/genética , Cabras/crecimiento & desarrollo , Fenotipo , Canales de Potasio de Rectificación Interna/genética
13.
Nutrients ; 16(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398881

RESUMEN

This study aimed to determine the impact of a fiber supplement on body weight and composition in individuals with obesity with specific genetic polymorphisms. It involved 112 adults with obesity, each with at least one minor allele in the FTO, LEP, LEPR, or MC4R polymorphism. Participants were randomized to receive either a fiber supplement (glucomannan, inulin, and psyllium) or a placebo for 180 days. The experimental group showed significant reductions in body weight (treatment difference: -4.9%; 95% CI: -6.9% to -2.9%; p < 0.01) and BMI (treatment difference: -1.4 kg/m2; 95% CI: -1.7 to -1.2; p < 0.01) compared to placebo. Further significant decreases in fat mass (treatment difference: -13.0%; 95% CI: -14.4 to -11.7; p < 0.01) and visceral fat rating (treatment difference: -1.3; 95% CI: -1.6 to -1.0; p < 0.01) were noted. Homozygous minor allele carriers experienced greater decreases in body weight (treatment difference: -3.2%; 95% CI: -4.9% to -1.6%; p < 0.01) and BMI (treatment difference: -1.2 kg/m2; 95% CI: -2.0 to -0.4; p < 0.01) compared to heterozygous allele carriers. These carriers also had a more significant reduction in fat mass (treatment difference: -9.8%; 95% CI: -10.6 to -9.1; p < 0.01) and visceral fat rating (treatment difference: -0.9; 95% CI: -1.3 to -0.5; p < 0.01). A high incidence of gastrointestinal events was reported in the experimental group (74.6%), unlike the placebo group, which reported no side effects. Dietary supplementation with glucomannan, inulin, and psyllium effectively promotes weight loss and improves body composition in individuals with obesity, particularly those with specific genetic polymorphisms.


Asunto(s)
Inulina , Mananos , Psyllium , Adulto , Humanos , Psyllium/uso terapéutico , Polimorfismo de Nucleótido Simple , Obesidad/tratamiento farmacológico , Obesidad/genética , Obesidad/epidemiología , Peso Corporal/genética , Pérdida de Peso/genética , Suplementos Dietéticos , Índice de Masa Corporal , Receptor de Melanocortina Tipo 4/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
14.
Anim Biotechnol ; 35(1): 2309956, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38315463

RESUMEN

SNX29 is a potential functional gene associated with meat production traits. Previous studies have shown that SNX29 copy number variation (CNV) could be implicated with phenotype in goats. However, in Diannan small-ear (DSE) pigs, the genetic impact of SNX29 CNV on growth traits remains unclear. Therefore, this study investigated the associations between SNX29 CNVs (CNV10810 and CNV10811) and growth traits in 415 DSE pigs. The results revealed that the CNV10810 mutation was significantly associated with backfat thickness in DSE pigs at 12 and 15 months old (P < 0.05), while the CNV10811 mutation had significant effects on various growth traits at 6 and 12 months old, particularly for body weight, body height, back height and backfat thickness (P < 0.05 or P < 0.001). In conclusion, our results confirm that SNX29 CNV plays a role in regulating growth and development in pigs, thus suggesting its potential application for pig breeding programmes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Nexinas de Clasificación , Porcinos/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Nexinas de Clasificación/genética , Fenotipo , Peso Corporal/genética , Dosificación de Gen
15.
J Neurosci ; 44(14)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38395612

RESUMEN

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dieta Alta en Grasa , Animales , Femenino , Masculino , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Glucosa/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Obesidad/metabolismo
16.
Sci Rep ; 14(1): 3869, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365996

RESUMEN

Improving feed utilization efficiency is a challenge in aquaculture. Therefore, we developed an indirect benchmark to use in selecting trout for improved efficiency of feed utilization on plant protein (soy)-based diets, with the long-term goal of reducing the cost of commercial trout production. We used a four-part integrative approach to identify feed efficient individuals among 1595 fish coming from 12 genetically selected families by establishing the phenotypic relationship between feed conversion ratio (FCR) and body weight variations using compensatory feeding regimes. Additionally, we examined the nutritional composition of fish filet for each efficiency phenotype during the compensatory regimen. Our findings showed that the fish with the lowest weight loss during a feed deprivation period and the highest weight gain during the refeeding period (FD-/RF +) demonstrated the lowest FCR (FCR = 0.99) and consisted of individuals from several lines. This finding confirms the possibility of improving feed efficiency in mixed lines. Although feeding period has an effect on nutritional composition of fillet, such selection criteria did not show an effect on groups. Overall, successful selection for the improvement of feed efficiency will have a broad application to commercial fish selective breeding programs, leading to increased aquaculture sustainability in the long run.


Asunto(s)
Oncorhynchus mykiss , Humanos , Animales , Oncorhynchus mykiss/genética , Proteínas de Plantas/genética , Dieta , Selección Artificial , Peso Corporal/genética , Alimentación Animal/análisis
17.
Animal ; 18(2): 101064, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232659

RESUMEN

In beef cattle, the selection for higher weights at young ages has been questioned with the argument that this criterion may increase the adult weight of cows, resulting in higher costs. Therefore, selection criteria should be employed to increase weights at young ages with minimal impact on the adult weight of cows. Additionally, the relationship between measures of cow production efficiency and other well-established selection criteria in breeding programs remains poorly understood. The objective of this study was to longitudinally evaluate the relationship between the weaning index (WIndex) as a measure of efficiency and growth traits of the cows. Possible changes over time in WIndex due to selection applied for yearling weight (YW) were also investigated. The WIndex was proposed to maximize genetic response in the weaning weight of the calf while maintaining genetic gain in BW of the cow at zero. A random regression model was adopted to estimate correlations between WIndex, BW, hip height (HH), and body condition score (BCS) using records of Nelore cows from three lines. Genetic trends were calculated for the control line (NeC) and lines selected for greater YW (NeS and NeT). The age of 3 years was the most critical for the weaning efficiency of the cows. At this stage, young cows are still growing and wean lighter calves than their adult counterparts. The genetic correlation estimates between WIndex and BW (-0.58 to 0.04), HH (-0.05 to -0.34), and BCS (-0.51 to -0.17) were close to zero or negative. BW and HH were strongly correlated genetically across all ages (0.73-0.76). In general, HH exhibited a weak and negative genetic relationship with BCS. The genetic correlation between BW and BCS was stronger for advanced ages (0.45-0.68). In lines selected for YW, important increases in WIndex were observed. However, NeS has been selected since the 1980s until the present for YW, and thus, it showed a more pronounced trend of increasing BW and, consequently, a more modest trend of increasing WIndex compared to NeT. In contrast, WIndex exhibited a trend close to zero for NeC. In this context, monitoring HH and BCS can be useful to avoid losses in the weaning efficiency of cows. Furthermore, we suggest that one way to mitigate efficiency losses in calf production could involve stabilizing the BW of cows and increasing the weaning weight of calves using the WIndex.


Asunto(s)
Destete , Femenino , Bovinos/genética , Animales , Peso Corporal/genética , Fenotipo
18.
Animal ; 18(2): 101068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237477

RESUMEN

Australian beef cattle experience variable conditions, which may give rise to genotype-by-environment interactions depending on the genotypes' macro- and/or micro-genetic environmental sensitivity (GES). Macro-GES gives rise to genotype-by-environment interactions across definable and shared environments, while micro-GES causes heritable variation of phenotypes, e.g., the performance of progeny from one sire may be more variable than other sires. Yearling weight (YW) is a key trait in Australian Angus cattle that may be impacted by both macro- and micro-GES. Current models for genetic evaluation of YW attempt to account for macro-GES by fitting sire-by-herd interactions (S × H). Variation in micro-GES had not yet been estimated for YW in Australian Angus. The aim of this study was to estimate genetic variation due to macro- and micro-GES in YW of Australian Angus cattle. A reaction norm with contemporary group effects as the environmental covariate was fitted either as an alternative to or in combination with a random S × H effect to account for macro-GES. Double hierarchical generalised linear models (DHGLM), fitted as sire models, were used to estimate the genetic variance of the dispersion as a measure of micro-GES. Variation due to both macro- and micro-GES were found in YW. The variance of the slope of the reaction norm was 0.02-0.03 (SEs 0.00), while the S × H variance accounted for 7% of the phenotypic variance in all models. Results showed that both a random S × H effect and a reaction norm should be included to account for both macro-GES and the additional variation captured by an S × H effect. The heritability of the dispersion on the measurement scale ranged from 0.06 to 0.10 (SEs 0.00) depending on which model was used. It should therefore be possible to alter both macro- and micro-GES of YW in Australian Angus through selection. However, care should be taken to ensure an appropriate data structure when including sire-by-herd interactions in the mean part of a DHGLM; otherwise, it can cause biased estimates of micro-GES.


Asunto(s)
Modelos Genéticos , Bovinos/genética , Animales , Australia , Fenotipo , Genotipo , Modelos Lineales , Peso Corporal/genética
19.
BMC Genomics ; 25(1): 64, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229016

RESUMEN

BACKGROUND: Largemouth bass (Micropterus salmoides) has significant economic value as a high-yielding fish species in China's freshwater aquaculture industry. Determining the major genes related to growth traits and identifying molecular markers associated with these traits serve as the foundation for breeding strategies involving gene pyramiding. In this study, we screened restriction-site associated DNA sequencing (RAD-seq) data to identify single nucleotide polymorphism (SNP) loci potentially associated with extreme growth differences between fast-growth and slow-growth groups in the F1 generation of a largemouth bass population. RESULTS: We subsequently identified associations between these loci and specific candidate genes related to four key growth traits (body weight, body length, body height, and body thickness) based on SNP genotyping. In total, 4,196,486 high-quality SNPs were distributed across 23 chromosomes. Using a population-specific genotype frequency threshold of 0.7, we identified 30 potential SNPs associated with growth traits. Among the 30 SNPs, SNP19140160, SNP9639603, SNP9639605, and SNP23355498 showed significant associations; three of them (SNP9639603, SNP9639605, and SNP23355498) were significantly associated with one trait, body length, in the F1 generation, and one (SNP19140160) was significantly linked with four traits (body weight, height, length, and thickness) in the F1 generation. The markers SNP19140160 and SNP23355498 were located near two growth candidate genes, fam174b and ppip5k1b, respectively, and these candidate genes were closely linked with growth, development, and feeding. The average body weight of the group with four dominant genotypes at these SNP loci in the F1 generation population (703.86 g) was 19.63% higher than that of the group without dominant genotypes at these loci (588.36 g). CONCLUSIONS: Thus, these four markers could be used to construct a population with dominant genotypes at loci related to fast growth. These findings demonstrate how markers can be used to identify genes related to fast growth, and will be useful for molecular marker-assisted selection in the breeding of high-quality largemouth bass.


Asunto(s)
Lubina , Polimorfismo de Nucleótido Simple , Animales , Lubina/genética , Frecuencia de los Genes , Genotipo , Peso Corporal/genética
20.
Anim Genet ; 55(1): 110-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069460

RESUMEN

Selective breeding of meat pigeons is primarily based on growth traits, especially muscle mass (MM). Identification of functional genes and molecular markers of growth and slaughter traits through a genome-wide association study (GWAS) will help to elucidate the underlying molecular mechanisms and provide a theoretical basis for the selective breeding of meat pigeons. The phenotypic data of body weight (BW) and body size (BS) of 556 meat pigeons at 52 and 80 weeks of age were collected. In total, 160 434 high-quality single nucleotide polymorphism sites were obtained by restriction site-associated DNA sequencing. The GWAS analysis revealed that MSTN, IGF2BP3 and NCAPG/LCORL were important candidate genes affecting the growth traits of meat pigeons. IGF2BP3 and NCAPG/LCORL were highly correlated to BW and BS, which are related to overall growth and development, while MSTN was associated with pectoral thickness and BW. Phenotypic association validation with the use of two meat pigeon populations found that the MSTN mutation c.C861T determines the MM. These results provide new insights into the genetic mechanisms underlying phenotypic variations of growth traits and MM in commercial meat pigeons. The identified markers and genes provide a theoretical basis for the selective breeding of meat pigeons.


Asunto(s)
Columbidae , Estudio de Asociación del Genoma Completo , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Columbidae/genética , Fenotipo , Carne/análisis , Peso Corporal/genética , Mutación , Músculos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA